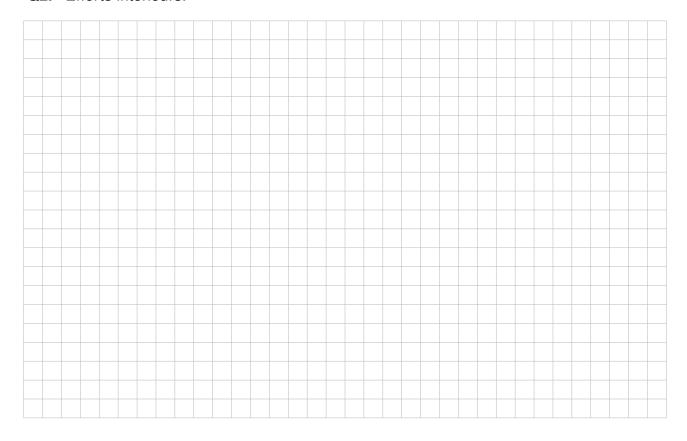
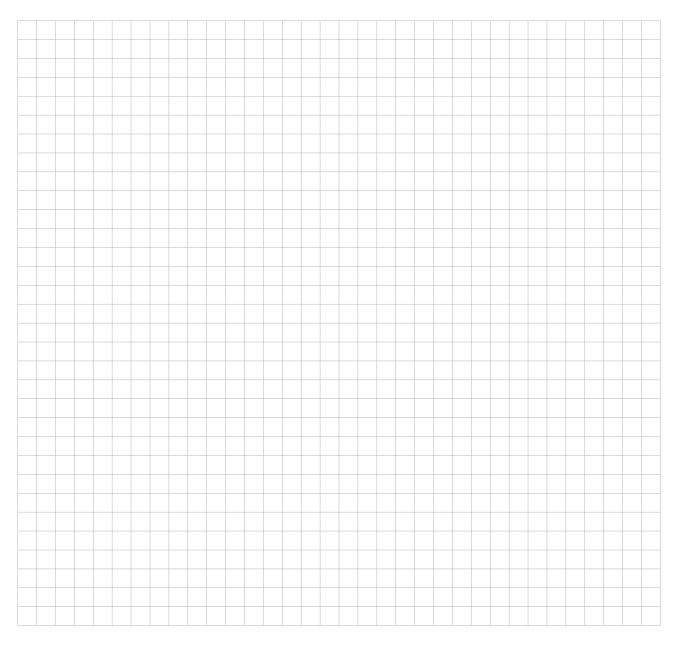
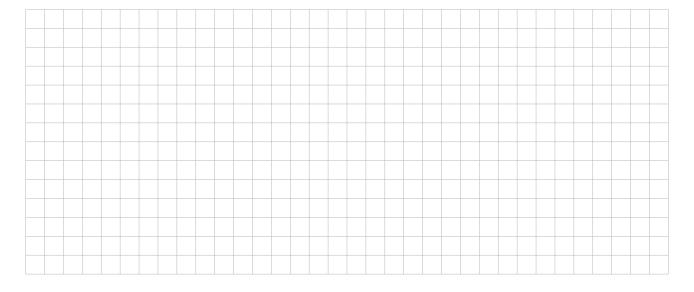

CONCOURS	Numéro d'inscription Nom : Numéro de table Prénom :	
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur • Remplir soigneusement l'en-tête de chaque feuille avant de c • Rédiger avec un stylo non effaçable bleu ou noir • Ne rien écrire dans les marges (gauche et droite) • Numéroter chaque page (cadre en bas à droite) • Placer les feuilles A3 ouvertes, dans le même sens et dans l'o	·

DOCUMENT RÉPONSE


Ce Document Réponse doit être rendu dans son intégralité.

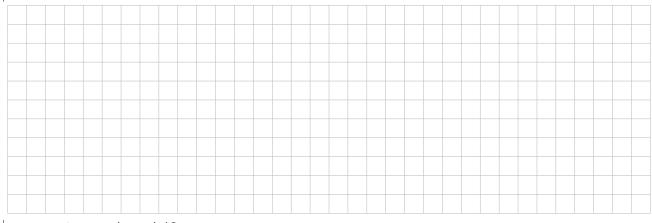
Q1. Empreinte carbone du transport.


Q2. Efforts intérieurs.



Q3. Conditions limites et flèche y(L).

Q4. Valeur numérique du moment quadratique de la poutre.



GONCOURS	Numéro d'inscription Numéro de table Né(e) le	Nom : Prénom :	
	Filière : TSI		Session: 2025
Emplacement GR Code	Épreuve de :	Sciences Industrielles de l'Ingénieur	
Empl	Consignes	 Remplir soigneusement l'en-tête de chaque feuille avant de commente l'enféquer à Rédiger avec un stylo non effaçable bleu ou noir Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'ordre 	ncer à composer
			TSI7SI

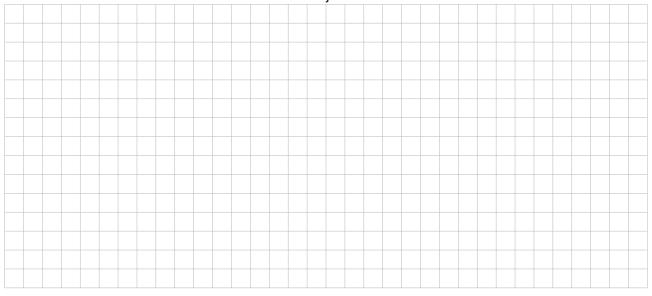
Q5. Compléter la fonction de dichotomie suivante :

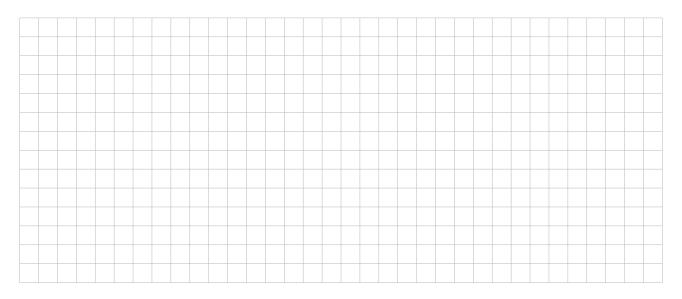
 $\begin{array}{ll} \textbf{def} & \text{dichotomie}\,(\,f\,\,,p\,,q\,,eps\,)\,:\\ & \text{assert} & p{<}q & \textbf{and} & f\,(p\,)*\,f\,(q\,){<}0 & \textbf{and} & eps{>}0 \end{array}$

while (q-p)>eps:

return (p+q)/2

Q6. Conclure sur la faisabilité du cahier des charges (donné dans le diagramme des exigences en **figure 3**) concernant la flèche de la poutre $y(L) = \delta_{\text{micropipette}}$.


Q7. Compléter le tableau ci-dessous.

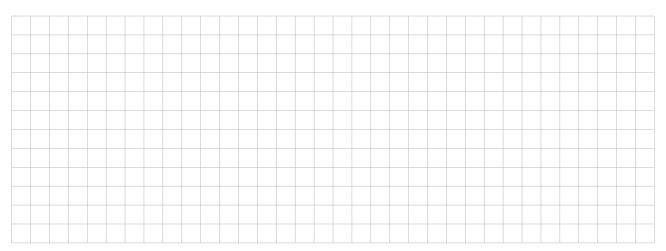

Constituants	Entrée	Sortie
Transformateur		
Redresseur + filtre		
Onduleur + filtre		

Q8. Exprimer l'impédance équivalente à l'association série $(R_m, L_m \text{ et } C_m)$ notée $\underline{Z_m}$.



Q9. Montrer que l'impédance équivalente à l'actionneur piézo-électrique notée \underline{Z} peut se mettre sous la forme donnée dans le sujet.

Q10. Pulsation de résonance notée ω_r et pulsation d'antirésonance notée ω_a . Comportement et précautions à prendre pour l'actionneur piézo-électrique à ces pulsations.

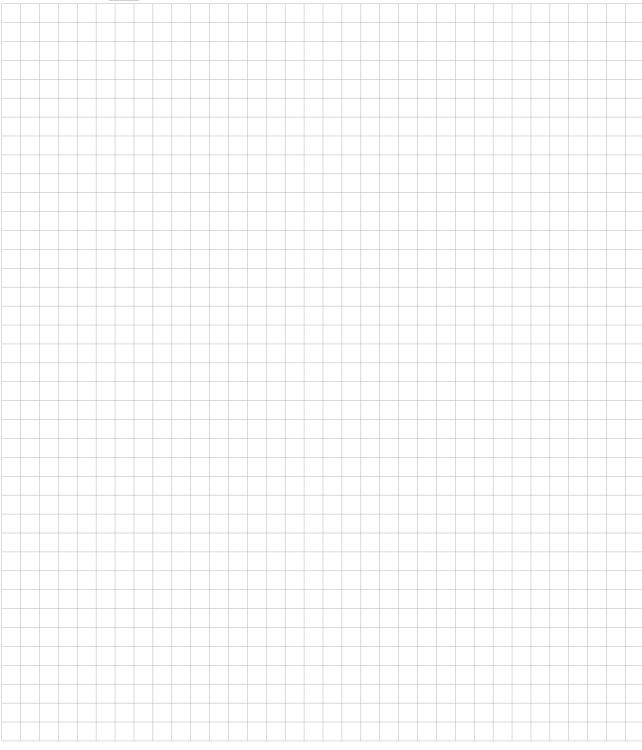

Q11. Capacité du modèle à traduire les caractéristiques principales de l'actionneur.

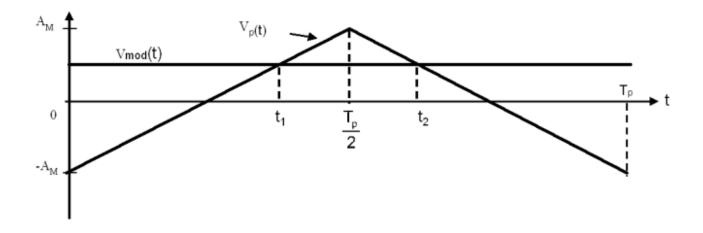
Q12. Compléter le tableau ci-dessous.

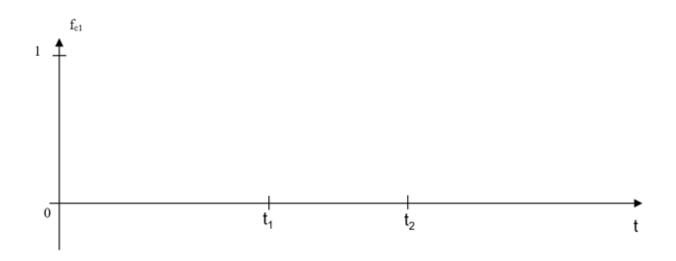
f_{c1}	f_{c2}	Autorisée	Interdite	K_1 et K_3	K_2 et K_4	$v_{AC}(t)$	$v_{BC}(t)$	$u_{ond}(t)$
0	0							
0	1							
1	0							
1	1							

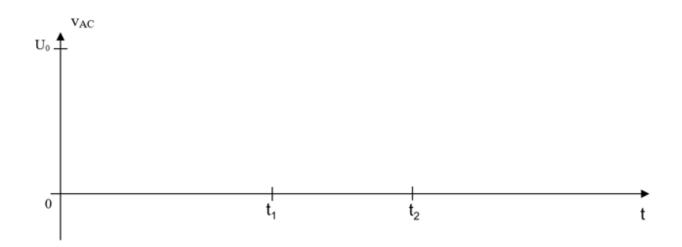
Q13. Représenter l'allure de la tension délivrée à l'actionneur.

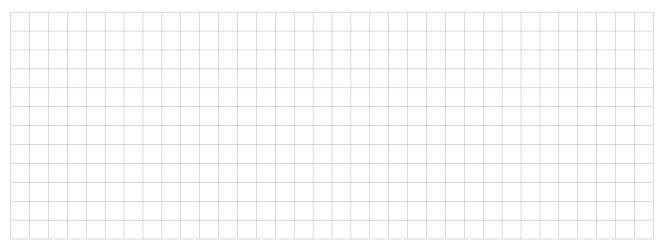

Q14. Expression de la tension pour l'onde fondamentale et valeur de U_0 de la source continue.

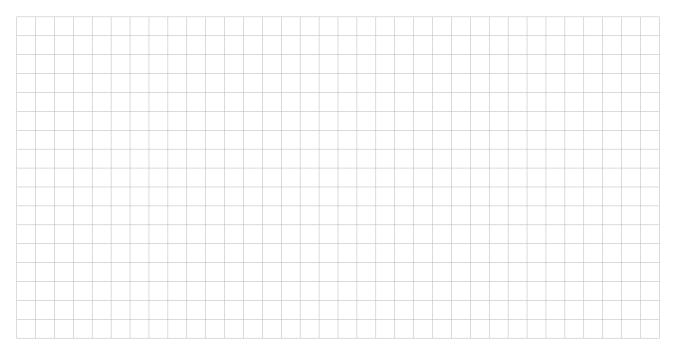

CONCOURS	Numéro d'inscription Nom: Numéro de table Prénom:	
tu a	Filière : TSI	Session: 2025
Emplacement GR Code	*Remplir soigneusement l'en-tête de chaque feuille avant d *Rédiger avec un stylo non effaçable bleu ou noir *Ne rien écrire dans les marges (gauche et droite) *Numéroter chaque page (cadre en bas à droite)	le commencer à composer
	• Placer les feuilles A3 ouvertes, dans le même sens et dans	l'ordre


Q15. Valeur efficace de l'harmoniques de rang 3 et sa valeur relative à la valeur efficace de l'onde fondamentale. Conclure sur la qualité de l'onde et sur la performance de cette stratégie de commande.

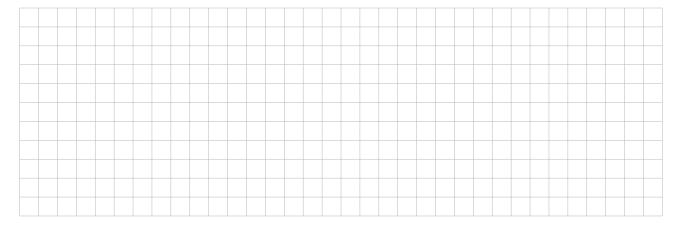



Q16. $T_f(j\omega) = \frac{U_p}{U_{\text{ond}}}$. Montrer que $L_a \ge \frac{101}{C_{eq} \cdot 9 \cdot \omega_O^2}$. Conclure sur le dimensionnement de L_a .

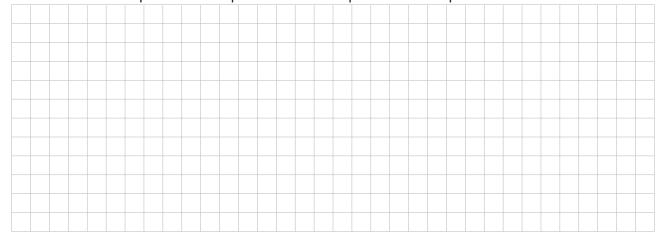

Q17. Allure de l'évolution temporelle.


Q18. Rapport cyclique et valeur moyenne de $v_{AC}(t)$.

Q19. Montrer que $\langle u_{\text{ond}}(t) \rangle = \frac{U_0}{A_M} \cdot v_{\text{mod}}(t)$.

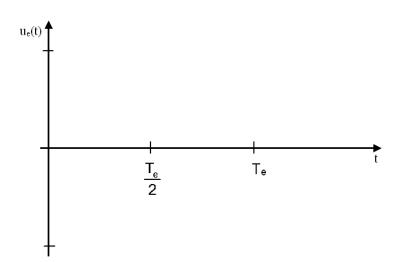


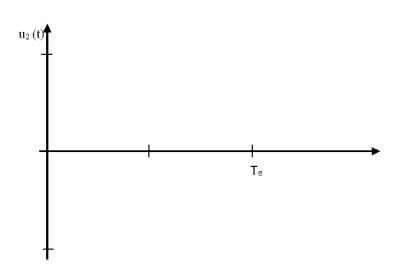
Q20. Évolution de la valeur moyenne de la tension délivrée par l'onduleur. Valeur de U_0 .



CONCOURS	Numéro d'inscription	
CINP	Numéro de table Prénom :	
	Né(e) le	
	Filière: TSI	Session: 2025
Emplacement or Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Emp	 Remplir soigneusement l'en-tête de chaque feuille avant d Rédiger avec un stylo non effaçable bleu ou noir Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans 	

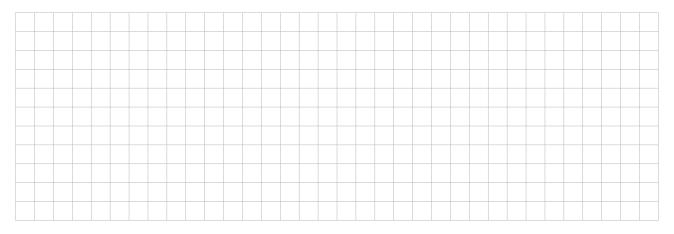
Q21. Stratégie en MLI.


Q22. Fréquence de la modulante f_O . Valeur efficace de l'onde fondamentale appliquée à l'actionneur piézo-électrique. Valeurs des plus fortes amplitudes.



Q23. Avantages et inconvénients.

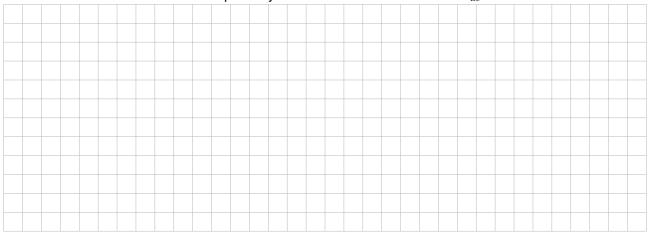
Q24. Allure des tensions $u_e(t)$ et $u_2(t)$. Diodes passantes.


Q25. < u2 >, *E* et *m*.

Q26. Compléter le tableau ci-dessous, puis conclure sur le type de filtre réalisé par l'association L et C.

						Lin	nite	:	$ Z_c $	$ Z_L $	u_s	_						

Q27. Modélisation de l'actionneur en basse fréquence : $Y(j\omega) = jK_{ac} \cdot \omega$. Calcul de K_{ac} .

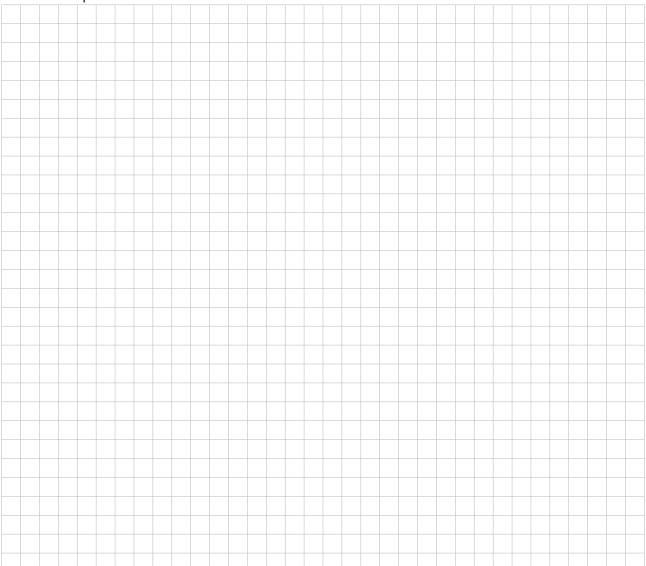

Q28. Équation différentielle qui régit $u_{ac}(t)$. Fonction de transfert $H_{fac}(p)$.

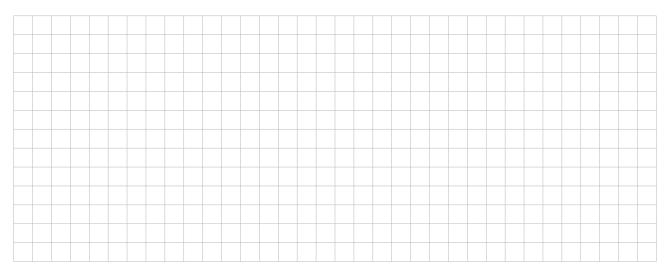
Q29. Conclure en caractérisant la réponse du filtre à un échelon de tension (critique, hypercritique, pseudo-oscillatoire ou oscillatoire).

Q30. Calcul du module, détermination de U_{ac} et conclusion sur la nécessité d'agir sur la commande de l'onduleur pour ajuster la valeur efficace de U_{ac} à la valeur désirée.

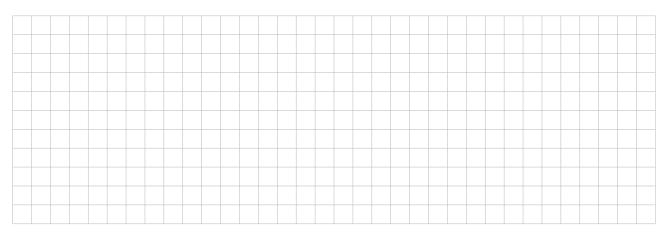
CONCOURS	Numéro d'inscription	
GNP	Numéro de table Prénom :	
	Né(e) le	
	Filière: TSI	Session: 2025
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Emp	 Remplir soigneusement l'en-tête de chaque feuille avant de comme Rédiger avec un stylo non effaçable bleu ou noir Consignes Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'ordre 	encer à composer

Q31. Baisse de tension engendrée pour un échelon de 20~V de perturbation.

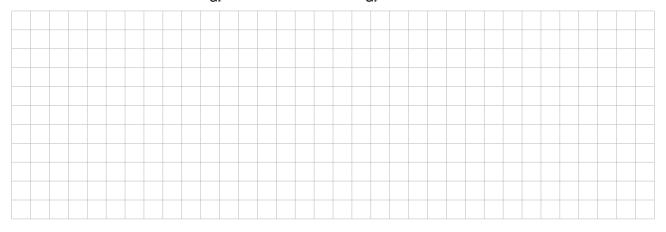



Q32. Exprimer la fonction de transfert en boucle fermée, puis conclure sur l'efficacité de cette correction.

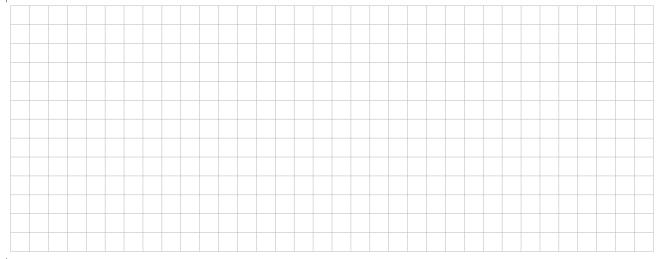
Q33. Diagramme de phase asymptotique du système en boucle ouverte, puis conclure sur le risque d'instabilité.



Q34. H_{int} . Second ordre stabilisé. K_{int} .



Q35. Analyse de l'évolution de la valeur efficace, puis conclusion.



Q36. Accélération linéaire $\frac{d^2y_M}{dt^2}(t)$. Relation liant $\frac{d^2y_M}{dt^2}(t)$ et y_M . Conclure.

	Numéro d'inscription	
GONCOURS	Numéro de table Prénom :	
	Né(e) le	
	Filière: TSI	Session: 2025
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Empl	Remplir soigneusement l'en-tête de chaque feuille avant de Rédiger avec un stylo non effaçable bleu ou noir Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'e	

Q37. Compléter la fonction Python.

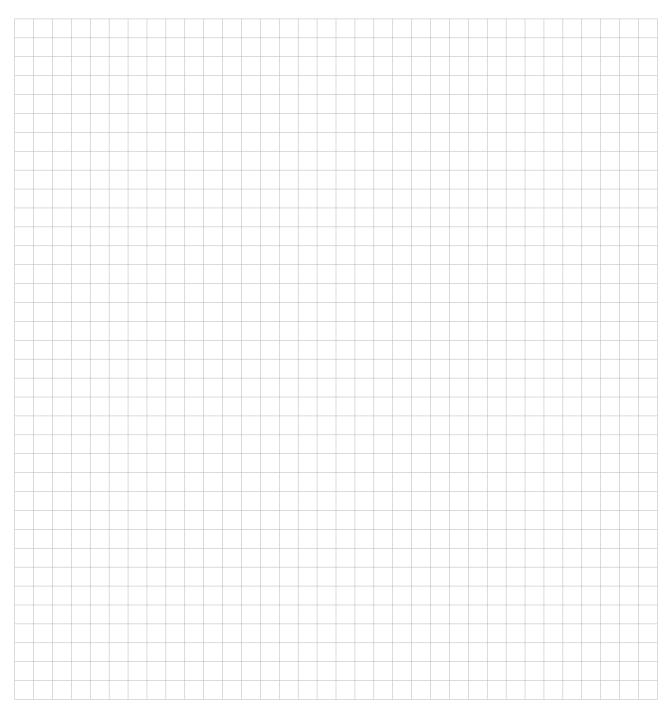
return res

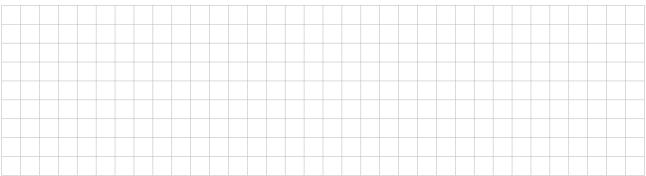
Q38. Écrire la fonction cout(e0, omega, L2, Ltemps).

def cout(e0, omega, L2, temps):

return res

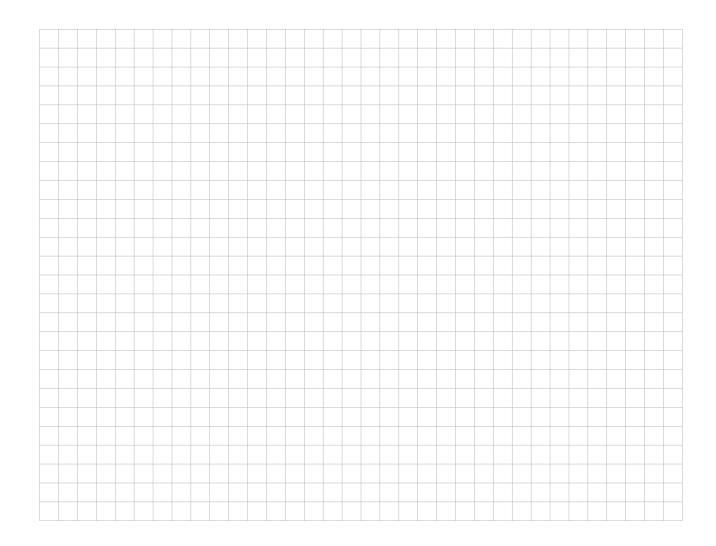
Q39. Écrire la fonction moindre_carre(L,Ltemps, e0, omega).

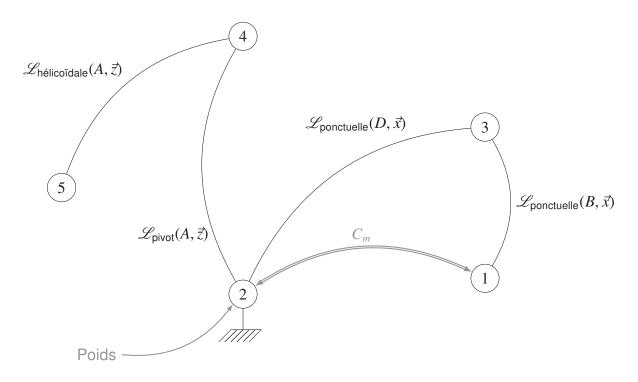

def moindre_carre(L, temps, e0, omega):

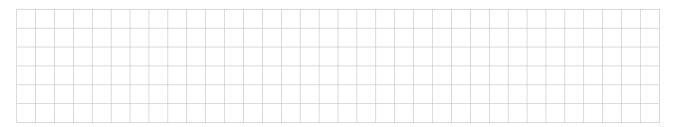

return res

Q40. Rapport de réduction $\frac{\omega_{4/2}}{\omega_{1/2}}$ du train épicycloïdal.

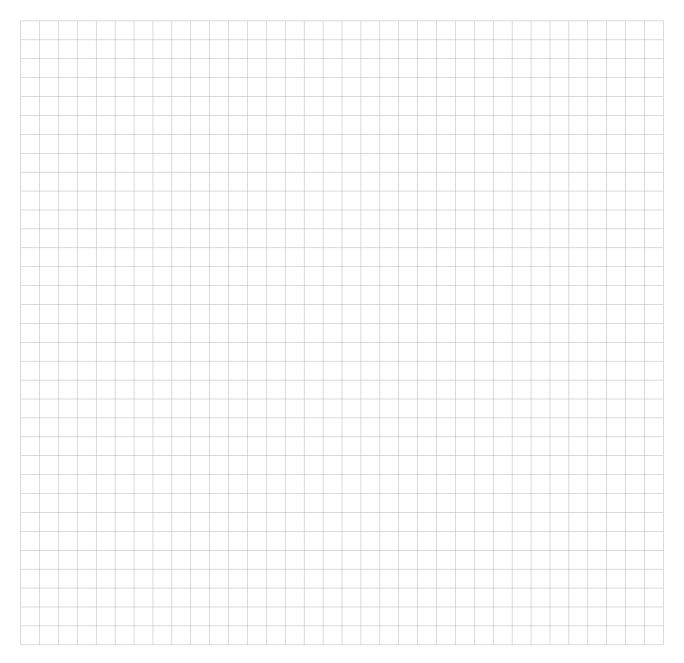
Q41. Relation littérale entre $v_{F,5/2}$ et $\omega_{4/5}$. Rapport de réduction total $\frac{v_{F,5/2}}{\omega_{1/2}}$.




Q42. Vitesse maximale de la micropipette.

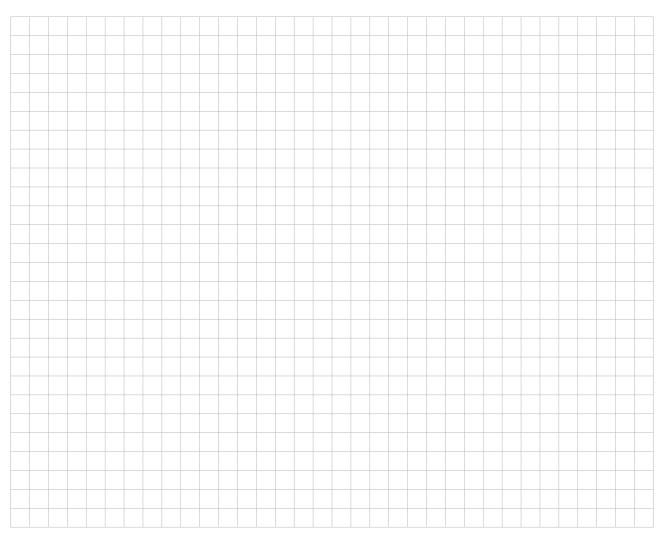

GNP	Numéro d'inscription Nom: Numéro de table Prénom:	
	Filière: TSI	Session: 2025
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Empl ORP	 Remplir soigneusement l'en-tête de chaque feuille avant de comm Rédiger avec un stylo non effaçable bleu ou noir Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'ordre 	encer à composer

Q43. Compléter le graphe de structure ci-dessous.



Q44. Théorème de l'énergie cinétique.

Q45. Énergie cinétique de Σ par rapport à (2).



Q46. Déterminer $P_{\text{ext}\to\Sigma/2}$.

Q47. Application du théorème de l'énergie cinétique.

	Numéro d'inscription	
CINP	Numéro de table Prénom :	
	Né(e) le	
	Filière : TSI	Session: 2025
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Empl	 Remplir soigneusement l'en-tête de chaque feuille avant Rédiger avec un stylo non effaçable bleu ou noir Consignes Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans 	

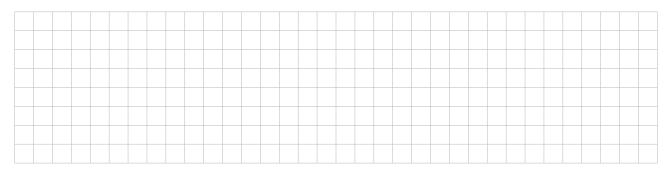
Q48. Accélération maximale de la micropipette $a_{F,5/2}^{\max}$.

Q49. Application numérique en unité SI pour le pas et pour le moment d'inertie.

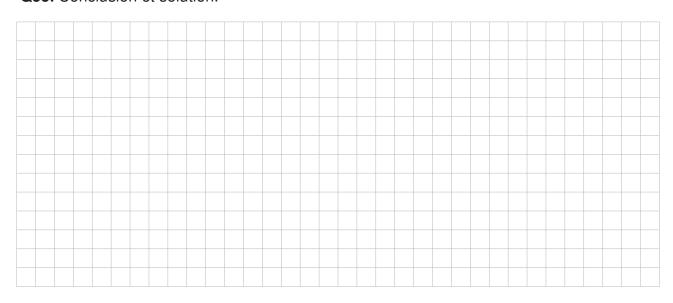
Q50. Dimensionnement du moteur en régime nominal. Conclusion quant au respect des exigences Id. 1.3.1 et Id. 1.3.2.

Q51. Étude du schéma-blocs du moteur.

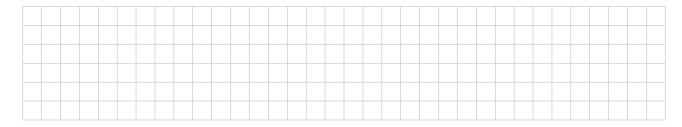
Q52. Équations du moteur dans le domaine de Laplace.



Q53. Expression de la vitesse du moteur en régime permanent $\omega_m^{\text{permanent}}$.



Q54. Valeurs numériques liées au moteur.



Q55. Conclusion et solution.

CONCOURS	Numéro d'inscription Nom :	
	de table	
	Filière: TSI	Session: 2025
Emplacement GR Code	Épreuve de : Sciences Industrielles de l'Ingénieur	
Empl	 Remplir soigneusement l'en-tête de chaque feuille avant de connection et l'en-tête de chaque feuille avant de connection et l'en-tête de chaque feuille avant de connection et l'en-tête de chaque pour l'en-tête de chaque feuille avant de connection et l'en-tête de chaque et	

Q56. Déterminer la valeur de la constante K_{capt} .

Q57. *K*_{adapt}.

Q58. Erreur $\mu = v_X^{\text{cons}} - v_X^{\text{plat}}$. Conclusion sur l'intérêt d'avoir un correcteur PI.

Q59. Marges de gain et marges de phase du système.

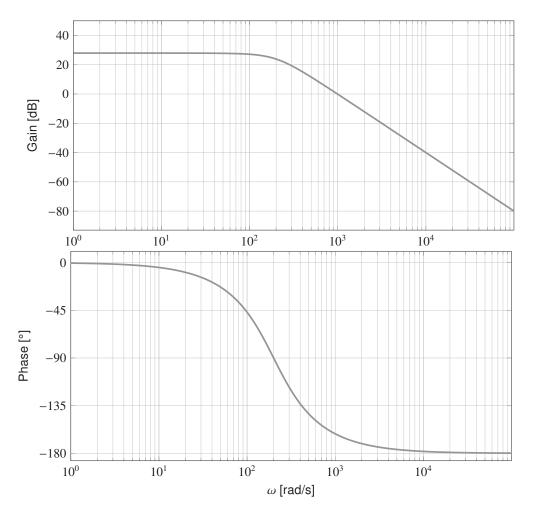
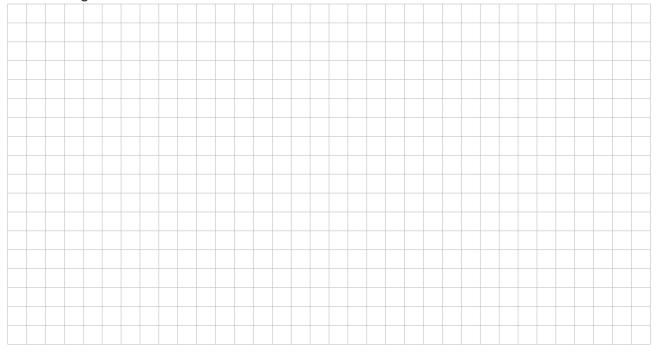



Figure 32 - Diagramme de Bode de la FTBO du système sans correcteur

Q60. Expression de K et de T en fonction de K_P et de τ_I du correcteur PI.



Q61. Réglage du paramètre K.

Q62. Réglage du paramètre T et vérification du diagramme des exigences pour le système corrigé.

GNP	Numéro d'inscription Nom : Numéro de table Prénom :				
	Né(e) le				
Emplacement QR Code	Filière: TSI	Session: 2025			
	Épreuve de : Sciences Industrielles de l'Ingénieur				
	 Remplir soigneusement l'en-tête de chaque feuille avant de con Rédiger avec un stylo non effaçable bleu ou noir Consignes Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'ordi 	·			

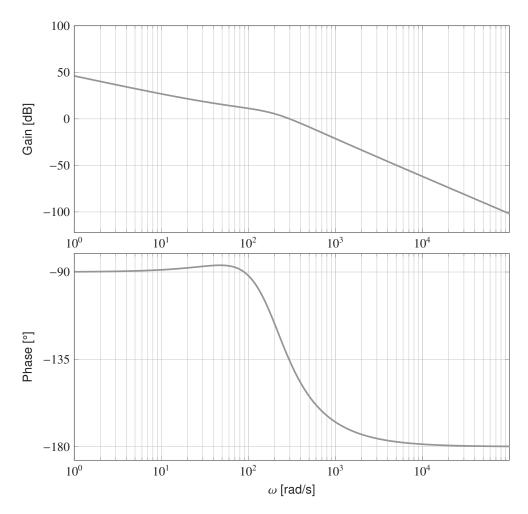
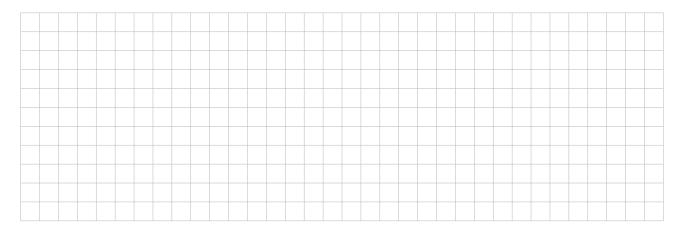



Figure 33 - Diagramme de Bode de la FTBO du système avec correcteur PI

Q63. Type d'algorithme d'intelligence artificielle et justification.

Q64. Indicateurs de qualité de l'algorithme.

Q65. Conclusion finale.

