

ÉPREUVE SPÉCIFIQUE - FILIÈRE PSI

PHYSIQUE - CHIMIE

Durée : 4 heures

N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, bleu clair ou turquoise, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de quatre parties indépendantes.

Des données se trouvent en fin de sujet.

Quelques aspects liés à l'habitat

Partie I - Isolation thermique

I.1 - Étude d'une paroi plane

On considère une paroi plane (**figure 1**) d'épaisseur e_0 et de surface S_0 . On néglige les effets de bord selon y et z. La température ne dépend que de x. La température sur la première face, située en x=0 est T_1 , celle de la seconde face, située en $x=e_0$ est T_2 .

On note c la capacité thermique massique du matériau constitutif de la paroi, ρ sa masse volumique et λ sa conductivité thermique.

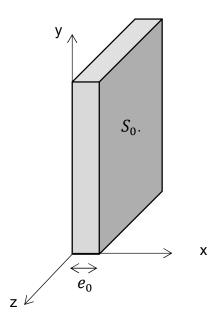


Figure 1 - Paroi plane

- **Q1.** Rappeler la loi de Fourier. Préciser les notations et les unités des grandeurs physiques qui interviennent.
- **Q2.** On suppose qu'il n'y a pas de source de chaleur interne. Établir pour l'étude de cette paroi, l'équation de la diffusion thermique en coordonnées cartésiennes.
- Q3. Déterminer en régime stationnaire le profil de température T(x) de cette paroi en fonction de e_0 , T_1 et de T_2 .
- **Q4.** Donner en régime stationnaire l'expression du flux thermique Φ traversant cette paroi orientée dans le sens des x>0, en fonction de e_0 , T_1 , T_2 , λ et de S_0 . En déduire l'expression de la résistance thermique R_{th} de cette paroi, en fonction de e_0 , λ et de S_0 .

I.2 - Étude d'une fenêtre double vitrage

Une fenêtre double vitrage (**figure 2**) de surface S_f est constituée de deux parois vitrées de même épaisseur e séparées d'une couche d'argon statique également d'épaisseur e. En plus des phénomènes de diffusion thermique dans le verre et dans l'argon, il faut tenir compte d'échanges conducto-convectifs au niveau des interfaces air extérieur – verre et verre – air intérieur. Ces échanges sont décrits par la loi de Newton $P = hS_f(T_{air} - T_s)$ où P est la puissance échangée, h est un coefficient d'échange, T_{air} et T_s sont les températures de l'air et du verre à une même interface.

Figure 2 - Fenêtre double vitrage de surface S_f

Soient T_{ext} et T_{int} respectivement les températures de l'air extérieur et de l'air intérieur de la pièce d'habitation équipée de cette fenêtre. Le coefficient d'échange conducto-convectif à l'interface air extérieur – verre est noté h_e , celui à l'interface verre – air intérieur est noté h_i . Les conductivités thermiques du verre et de l'argon sont notées respectivement λ_V et λ_{Ar} , avec $\lambda_{Ar} \ll \lambda_V$.

Soient T_{Sext} et T_{Sint} respectivement les températures en surface des verres aux interfaces air extérieur – verre et verre – air intérieur.

Les parois vitrées occupent les zones $0 \le x \le e$ et $2e \le x \le 3e$. L'argon occupe la zone $e \le x \le 2e$.

- **Q5.** Proposer, en régime stationnaire, un schéma électrique équivalent qui décrit les transferts thermiques associés à cette fenêtre. Précisez les expressions littérales des résistances thermiques qui interviennent en fonction des données de l'énoncé. Vous ferez apparaître sur votre schéma les différentes températures T_{ext} , T_{int} , T_{Sext} et T_{Sint} .
- **Q6.** On repère les différentes interfaces par leurs abscisses x. L'interface air extérieur verre se situe en x=0. On suppose $T_{ext} < T_{int}$. Précisez sans justification parmi les profils de température proposés sur la **figure 3** celui qui correspond à cette fenêtre.

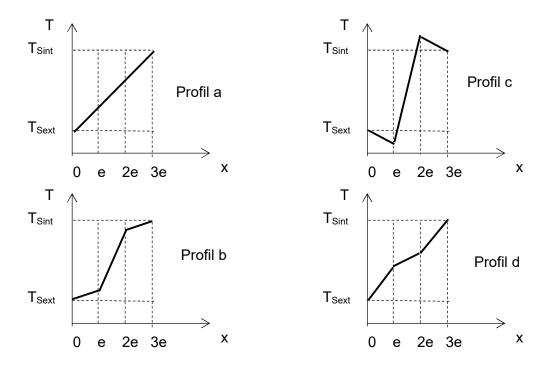


Figure 3 - Profils de température

I.3 - Étude d'une pièce d'habitation

On considère dans cette sous-partie une pièce d'habitation de température supposée uniforme. L'étude de la pièce est limitée à un mur comportant une fenêtre et à un plafond de surface S_p = 10 m². Ils sont tous les trois en contact avec le milieu extérieur de température constante T_{ext} = 274 K.

Les pertes thermiques par le sol et les cloisons intérieures sont négligées. On note R_1 la résistance thermique de la pièce, c'est-à-dire de l'ensemble {mur, fenêtre, plafond}. R_1 tient compte de la totalité des phénomènes convectifs et diffusifs.

On chauffe la pièce, initialement à la température T_{ext} , avec un radiateur de puissance P = 500 W. La température finale atteinte se stabilise à T_{fin} = 294 K.

- **Q7.** Donner la valeur numérique de R_1 , résistance thermique de la pièce d'habitation.
- **Q8.** On note T(t) la température de la pièce supposée uniforme à un instant t et C la capacité thermique de la pièce. Cette capacité englobe celle du mobilier, celle de l'air contenu dans la pièce et celle des portions de murs intérieurs, aussi appelés doublages, qui se situent avant l'isolant. Etablir dans l'approximation des régimes quasi-stationnaires, l'équation différentielle vérifiée par la température T(t). En déduire l'expression de la température T(t) en fonction de T_{ext} , T_{fin} , R_1 et de C.

- **Q9.** Le plafond a une épaisseur e_p = 5 cm et une conductivité thermique λ_p = 0,1 SI. Donner la valeur numérique de la résistance thermique du plafond notée R_{pl} . Exprimer littéralement la résistance thermique de l'ensemble mur-fenêtre, notée R_{mf} , en fonction de R_1 et de R_{pl} . Donner la valeur numérique de R_{mf} . Les déperditions thermiques sont-elles plus importantes par le plafond ou par l'ensemble mur-fenêtre ?
- **Q10.** On ajoute alors au plafond une couche d'isolant thermique d'épaisseur e_{isol} et de conductivité thermique λ_{isol} .

Exprimer littéralement la nouvelle résistance thermique de l'ensemble plafond-isolant, notée R'_{pl} , en fonction de R_{pl} , λ_{isol} , e_{isol} et de S_p .

Soit R_2 la nouvelle résistance thermique totale de la pièce. On admettra que R_2 = 0,12 K·W⁻¹.

D'après ce modèle, par quel coefficient a-t-on divisé les pertes d'énergie thermique de la pièce en ajoutant cette couche d'isolant au plafond ?

Partie II - Acoustique d'une cloison

II.1 - Modélisation de l'onde acoustique

On néglige l'influence de la pesanteur et la viscosité de l'air. On note P_0 et ρ_0 la pression et la masse volumique de l'air au repos et χ_S le coefficient de compressibilité isentropique de l'air.

On se propose d'étudier la propagation unidirectionnelle des ondes sonores planes. On travaillera dans le repère cartésien $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ où $\overrightarrow{e_z}$ correspond au vecteur unitaire dirigé suivant la verticale ascendante.

Après une perturbation élémentaire les caractéristiques de l'air sont décrites par les grandeurs suivantes qui sont des fonctions de la position x et du temps t:

$$v(x,t)$$
: la vitesse de l'air portée par le vecteur $\overrightarrow{e_x}$; $P(x,t)=P_0+p(x,t)$: la pression de l'air ; $ho(x,t)=
ho_0+\mu(x,t)$: la masse volumique de l'air.

- Q11. Rappeler en quoi consiste l'approximation acoustique.
- **Q12.** Soit dV un volume élémentaire d'air que nous appellerons par la suite particule d'air. Écrire l'équation de la dynamique vérifiée pour cette particule d'air. Projeter cette équation suivant le vecteur $\overrightarrow{e_x}$, puis linéariser cette équation dans le cadre de l'approximation acoustique.
- Q13. Rappeler l'équation locale de conservation de la masse et la linéariser dans le cadre de l'approximation acoustique.

Q14. On rappelle que, dans l'approximation acoustique, $\mu = \rho_0 \chi_S p$. Montrer que la surpression acoustique p(x,t) vérifie une équation de d'Alembert. En déduire l'expression de la célérité c_0 de l'onde en fonction de ρ_0 et de χ_S .

II.2 - Transmission du son à travers une cloison

Une onde sonore plane progressive sinusoïdale se propage dans l'air. Cette onde de pulsation ω arrive sous incidence normale sur une cloison rigide et non absorbante d'épaisseur e_c , de surface S_c et de masse M_c (**figure 4**). L'épaisseur de la cloison e_c est très inférieure à la longueur d'onde λ de l'onde sonore. En l'absence d'onde sonore, cette cloison est centrée sur la position x = 0.

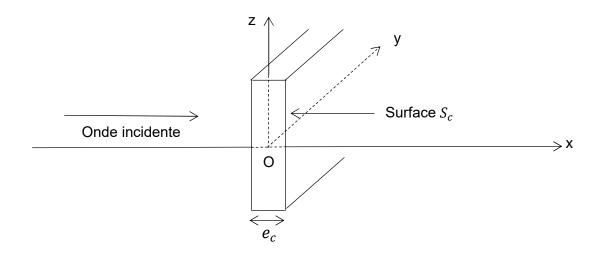


Figure 4 - Onde sonore et cloison

II.2.1 - Onde incidente

Pour l'onde incidente, on note $p_i(x,t)$ la surpression acoustique et $v_i(x,t)$ la vitesse particulaire de l'air. On désigne $\underline{p_i}(x,t)$ et $\underline{v_i}(x,t)$ les expressions complexes correspondantes. On note k le module du vecteur d'onde, p_{im} l'amplitude algébrique de la surpression de l'onde incidente et v_{im} l'amplitude algébrique de la vitesse de l'onde incidente. On définit l'impédance acoustique de l'onde incidente comme le quotient $Z=\frac{p_{im}}{v_{im}}$.

- **Q15.** Exprimer les expressions des ondes complexes $\underline{p_i}(x,t)$ et $\underline{v_i}(x,t)$ en fonction de k, ω , Z et de p_{im} ,
- **Q16.** On rappelle que $k=\frac{\omega}{c_0}$. Déterminer l'expression de Z en fonction de ρ_0 et de c_0 .

On rappelle que les phénomènes de réflexion et de transmission n'introduisent aucun déphasage singulier.

II.2.2 - Onde réfléchie

Pour l'onde réfléchie, on note $p_r(x,t)$ la surpression acoustique et $v_r(x,t)$ la vitesse particulaire de l'air. On désigne $\underline{p_r}(x,t)$ et $\underline{v_r}(x,t)$ les expressions complexes correspondantes. On note $\underline{p_{rm}}$ l'amplitude complexe de la surpression de l'onde réfléchie.

Q17. Exprimer les expressions des ondes complexes $\underline{p_r(x,t)}$ et $\underline{v_r(x,t)}$ en fonction de k, ω , p_{rm} et de Z.

II.2.3 - Onde transmise

Pour l'onde transmise de l'autre côté de la cloison, on note $p_t(x,t)$ la surpression acoustique et $v_t(x,t)$ la vitesse particulaire de l'air. On désigne $\underline{p_t}(x,t)$ et $\underline{v_t}(x,t)$ les expressions complexes correspondantes. On note p_{tm} l'amplitude complexe de la surpression de l'onde transmise.

Q18. Exprimer les expressions complexes des ondes $\underline{p_t(x,t)}$ et $\underline{v_t(x,t)}$ en fonction de k, ω , $\underline{p_{tm}}$ et de Z.

II.2.4 - Réponse fréquentielle de la cloison

Les surpressions sonores sont à l'origine d'une vibration de la cloison mince. Par le choix d'une bonne origine des temps, cette vibration peut être modélisée par son déplacement $X_c(t) = X_m cos(\omega t)$ auquel on associe le déplacement complexe $X_c(t)$.

- **Q19.** Déterminer une relation liant la surface S_c , la masse M_c , les amplitudes p_{im} , p_{rm} , p_{tm} , X_m et la pulsation ω .
- **Q20.** En écrivant une première équation de continuité, déterminer une équation liant les amplitudes p_{im} , p_{rm} et p_{tm} .
- **Q21.** En écrivant une seconde équation de continuité, déterminer une nouvelle relation liant les amplitudes p_{im} , p_{rm} , X_m , Z et ω .

On définit les coefficients complexes de réflexion $\underline{r}=\underline{p_{rm}}/p_{im}$ et de transmission $\underline{t}=\underline{p_{rm}}/p_{im}$.

- **Q22.** On pose $\omega_0 = \frac{2S_c Z}{M_c}$. À l'aide des relations précédentes, déterminer les expressions complexes des coefficients de réflexion \underline{r} et \underline{t} en fonction de ω et de ω_0 .
- **Q23.** Tracer les diagrammes asymptotiques représentant d'une part $\log |\underline{r}|$ et d'autre part $\log |\underline{t}|$ en fonction de $\log \left(\frac{\omega}{\omega_0}\right)$.
- **Q24.** On considère que la pulsation ω_0 se trouve dans la bande passante de l'oreille humaine. Préciser si la cloison transmet plus significativement les nuisances sonores graves ou aiguës. Préciser si l'écho réfléchi est significativement plus intense pour les nuisances sonores graves ou aiguës ?

Partie III - Alimentation en eau

La dureté de l'eau correspond à la quantité de calcium et/ou de magnésium dissous dans l'eau. Plus cette quantité est faible, plus l'eau est dite douce ; plus cette quantité est élevée, plus l'eau est dite dure ou calcaire. La dureté de l'eau s'exprime en degré hydrotimétrique français. Un degré hydrotimétrique français (F) correspond à 0,1 mole d'ion Ca²⁺ ou d'ion Mg²⁺ par m³ d'eau.

III.1 - Dosage des ions Ca²⁺ et Mg²⁺

L'EDTA (ion éthylènediaminetétraacétate) est une tétra-base notée Y⁴⁻ dont les pK_a à 298 K sont donnés dans le tableau suivant :

Couples	Y ⁴⁻ /HY ³⁻	HY ³⁻ /H ₂ Y ²⁻	H_2Y^2-/H_3Y^2-	H ₃ Y ⁻ /H ₄ Y
pK _a	10,3	6,2	2,7	2

Q25. En présence d'EDTA, les cations Ca2+ et Mg2+ forment des complexes suivant les réactions bilan (1) et (2) de constantes d'équilibre respectives K₁ et K₂ :

$$Ca^{2+}_{(aq)} + Y^{4-}_{(aq)} = CaY^{2-}_{(aq)} K_1 = 10^{10,7} (1)$$

$$Mg^{2+}_{(aq)} + Y^{4-}_{(aq)} = MgY^{2-}_{(aq)} K_2 = 10^{8,6} (2)$$

$$Mg^{2+}_{(aq)} + Y^{4-}_{(aq)} = MgY^{2-}_{(aq)}$$
 $K_2 = 10^{8,6}$ (2)

Ces réactions peuvent-elles être considérées comme quasi-totales ou non ?

Le dosage des ions Ca²⁺ et Mg²⁺ par l'EDTA en présence de Noir Eriochrome T (NET) est un dosage colorimétrique. Il repose sur le fait qu'une solution de NET en présence d'ions Ca2+ ou Mg2+ donne un complexe de couleur rouge, alors qu'en absence d'ions Ca²⁺ ou Mg²⁺ la solution est bleue.

Le protocole expérimental est le suivant :

- dans un erlenmeyer de 250 mL, on introduit un volume V₁ = 20 mL d'eau à étudier, un volume V_2 = 50 mL d'une solution tampon ammoniacal de pH = 10,3 de concentration C_2 et deux à trois gouttes de NET;
- parallèlement, on prépare une solution témoin en introduisant dans un erlenmeyer 70 mL d'eau distillée, la même quantité de NET que dans la solution précédente et 10 mL d'EDTA à la concentration $C_3 = 0.01 \text{ mol} \cdot \text{L}^{-1}$.
- **Q26.** Faire un schéma légendé du dispositif de dosage.
- **Q27.** Justifier le rôle de la solution tampon ammoniacal.
- Q28. Quelle est la couleur de la solution témoin ? Quelle est son utilité ?

Le volume de solution d'EDTA de concentration C₃, versé à l'équivalence, repéré par le changement de couleur est noté V_{éq}.

Q29. Exprimer littéralement le degré hydrotimétrique d de l'eau étudiée, en fonction des données utiles à choisir parmi : les volumes V₁, V₂, V_{éq} exprimés en mL et les concentrations C₂, C₃ exprimées en mol·L⁻¹.

III.2 - Dépôt de calcaire

Dans l'eau, ce qu'on appelle communément le calcaire est essentiellement du carbonate de calcium solide $CaCO_{3(s)}$. Son dépôt nuit aux installations sanitaires.

Le calcaire est soluble dans l'eau suivant la réaction bilan (3) :

$$CaCO_{3(s)} = Ca^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$$
 (3)

- **Q30.** Déterminer l'enthalpie standard $\Delta_r H_3^{\circ}$ de la réaction (3), supposée indépendante de la température. Justifier que le calcaire se dépose davantage sur les canalisations d'eau chaude que sur les canalisations d'eau froide.
- **Q31.** Justifier que le vinaigre blanc (acide acétique) permet de dissoudre les dépôts de calcaire. Vous appuierez votre raisonnement sur l'utilisation des domaines de prédominance et vous écrirez les bilans des réactions chimiques qui se produisent.

III.3 - Phase de régénération dans un adoucisseur d'eau domestique

Un adoucisseur d'eau élimine physiquement le calcaire présent dans l'eau par un échange d'ions calcium avec des ions sodium. Cet échange est rendu possible par l'utilisation de résines cationiques chargées de sodium.

Le schéma synoptique général de l'installation hydraulique est décrit sur la figure 5.

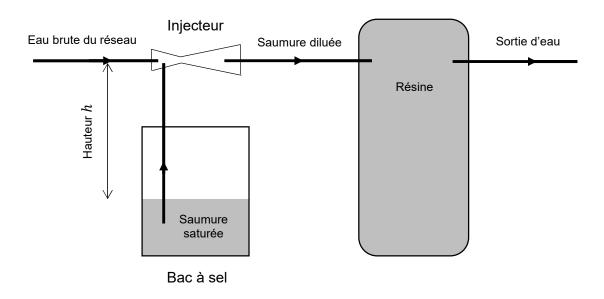


Figure 5 - Synoptique général de l'installation hydraulique de l'adoucisseur

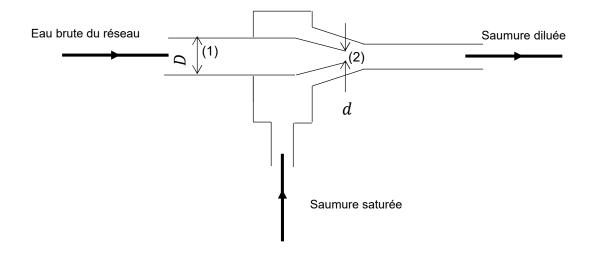


Figure 6 - Injecteur

Dans un adoucisseur d'eau, la phase de régénération des résines (**figure 6**) se fait par injection d'eau salée (saumure saturée) qui provient du bac à sel. L'eau brute venant du réseau en (1) circule ensuite dans un Venturi, qui provoque la montée de cette saumure dans le col (2). Le mélange eau brute + saumure traverse alors la résine échangeuse d'ions.

Grandeurs physiques utiles

Hauteur *h* entre le niveau de saumure saturée et l'injecteur en l'absence de pompage.

Diamètres de l'injecteur : D en entrée et d en sortie.

Pression effective de l'eau dans le réseau : $P_{rés}$.

Pression à la surface libre de la saumure P_{atm} .

Masse volumique de la saumure : ρ_S .

Masse volumique de l'eau brute : ρ_b .

Dans la question suivante les candidats devront faire preuve d'autonomie. Toute démarche même partielle de résolution sera prise en compte.

Q32. Déterminer, en fonction des grandeurs physiques précédentes, l'expression littérale du débit volumique minimal d'eau brute pour que la saumure saturée remonte jusqu'au niveau de l'injecteur.

Partie IV - Convertisseur de puissance

L'arrivée des panneaux photovoltaïques et le développement des véhicules électriques ont fait entrer les convertisseurs de puissance dans l'habitat.

Q33. Citer les noms des convertisseurs d'électronique de puissance qui permettent la conversion :

- a) du continu vers l'alternatif;
- b) de l'alternatif vers le continu;
- c) du continu vers le continu par modification de la valeur moyenne.

On considère le convertisseur dont le montage est donné sur la **figure 7**. La source d'énergie s'assimile à une source de tension continue parfaite U. Elle alimente une charge qui filtre les harmoniques de courant, de sorte que le courant $i_{ch}(t)$ qui la traverse est supposé parfaitement sinusoïdal. Les interrupteurs K_i sont tous constitués par l'association parallèle d'une diode D_i et d'un transistor T_i . Les diodes D_i sont supposées parfaites.

Par souci de lecture, seul l'interrupteur K_1 a été décomposé par l'association du transistor T_1 et de la diode D_1 .

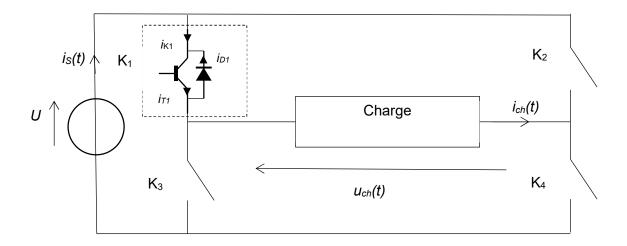
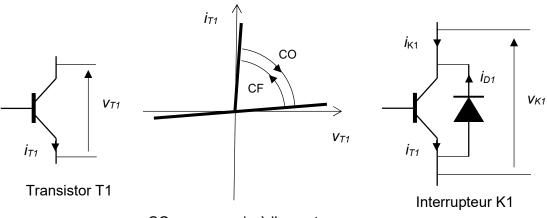



Figure 7 - Convertisseur de puissance

Q34. On rappelle la caractéristique courant-tension du transistor T₁ (**figure 8)** ainsi que la convention d'orientation de l'interrupteur K₁. Tracer la caractéristique courant-tension de cet interrupteur K₁.

CO : commande à l'ouverture CF : commande à la fermeture

Figure 8 - Caractéristique courant-tension

Sur une période T du convertisseur, la loi de commande des interrupteurs assure le fonctionnement suivant :

- K_1 est fermé sur l'intervalle de temps : $\left[\frac{T}{12}, \frac{7T}{12}\right]$,

- K_2 est fermé sur l'intervalle de temps : $\left[\frac{5T}{12}, \frac{11T}{12}\right]$,

- K₃ est fermé sur l'intervalle de temps : $\left[\frac{7T}{12}, \frac{13T}{12}\right]$,

- K₄ est fermé sur l'intervalle de temps : $\left[-\frac{T}{12}, \frac{5T}{12}\right]$.

Q35. Tracer l'allure de $u_{ch}(t)$ sur une période du convertisseur et déterminer en fonction de U, sa valeur moyenne U_{moy} et sa valeur efficace U_{eff} .

Q36. Décrire le protocole expérimental de la mesure des tensions U_{moy} et U_{eff} à l'aide d'un multimètre analogue à celui de la figure 9.

Figure 9 - Multimètre

On donne l'allure de $i_{ch}(t)$ (figure 10) de la forme $i_{ch}(t) = I_{max}\sin{(\omega t + \varphi)}$. La date t = 0 coïncide avec le début de la période du convertisseur décrite précédemment.

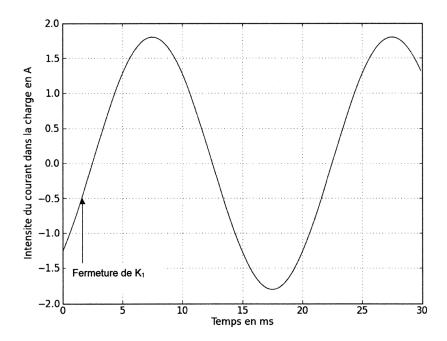


Figure 10 - Allure de $i_{\it ch}(t)$

- Q37. Évaluer la période T du convertisseur. Commenter.
- **Q38.** La charge est-elle de nature inductive ou capacitive ? Évaluer le déphasage φ .
- **Q39.** On désigne par $i_{K1}(t)$, $i_{T1}(t)$, $i_{D1}(t)$ et $i_{S}(t)$, les intensités des courants qui traversent respectivement l'interrupteur K_1 , le transistor T_1 , la diode D_1 et la source d'énergie.

Associer à chacune des grandeurs $i_{K1}(t)$, $i_{T1}(t)$, $i_{D1}(t)$ et $i_{S}(t)$ un des chronogrammes de la **figure 11**.

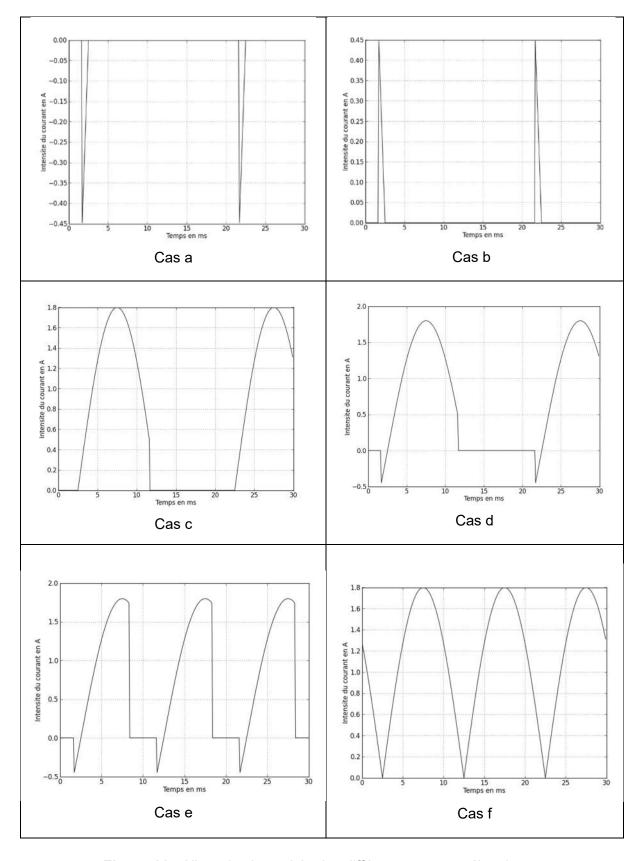


Figure 11 - Allure des intensités des différents courants électriques

- **Q40.** Dans le cadre de notre application, est-il absolument nécessaire de commander T_1 à la fermeture dès la date $t=\frac{T}{12}$? Sinon à partir de quelle date est-ce nécessaire ?
- **Q41.** Déterminer la puissance moyenne délivrée par la source de tension constante U en fonction de U, I_{max} et de φ ,

Données

Enthalpie de formation à 298 K

$$\Delta_f H^{\circ}(\text{Ca}^{2+}) = -542,83 \text{ kJ} \cdot \text{mol}^{-1}$$

 $\Delta_f H^{\circ}(\text{CO}_3^{2-}) = -677,14 \text{ kJ} \cdot \text{mol}^{-1}$
 $\Delta_f H^{\circ}(\text{CaCO}_3) = -1207,6 \text{ kJ} \cdot \text{mol}^{-1}$

Constantes d'acidité à 298 K

Expression de la dérivée particulaire du vecteur vitesse \vec{v}

$$\frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\text{grad}})\vec{v}$$

Trigonométrie

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Opérateurs vectoriels en coordonnées cartésiennes

$$\overrightarrow{\text{grad}}(U) = \frac{\partial U}{\partial x} \vec{e}_x + \frac{\partial U}{\partial y} \vec{e}_y + \frac{\partial U}{\partial z} \vec{e}_z$$
$$\operatorname{div}(\vec{a}) = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$
$$\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$$

FIN